Embedded Programming

Embedded Computing/Programming

- Embedded Systems
 - Computer Processor
 - Computer Memory
 - Input / Output Peripherals
 - Dedicated Function within a larger mechanical or electrical system.

Microprocessors

VS

Microcontrollers

Embedded Computing/Programming

Microprocessors

VS

Microcontrollers

- External RAM
- External Peripheral ICs

Internal RAMInternal Peripheral Interfaces

Specific tasks: Tuned and optimized Economies of scale through mass production

Networking Protocols

UP NEXT

Networking Protocols

Networks

Smart Home Competition

ZWave

90M range
24+M indoor
908 MHz

Bluetooth°

WiFi HaLow

Wired vs Wireless

UP NEXT

Wired vs. Wireless

Wired v. Wireless

Aspect	Wired	Wireless
SPEED	+	
BANDWIDTH		
INSTALLATION		+
COST		
MOBILITY		+
COVERAGE/RANGE		+
INTERFERENCE	+	
RELIABILITY		

UP NEXT

Parallel Technology

Sender

• RS-232

• SPI

• |²C

• PCI-e

1011 0011

Receiver

Low Cost Serial Bus Technologies

- 1960. Connected computers to modems.
- Motorola, 4-wire de facto standard serial on embedded systems. 1 master, multi-slave.
 - Multi-master/Multi-slave synchronous, packet switched, single-ended.
- UNI/O
 Low speed, asynchronous master/slave, 1 signal to pass
 1-Wire
 data for embedded systems.
 - Data and ground wires, similar to I²C but longer range.
 - Hi-speed peripheral connection bus. Graphic cards, hard drives, SSDs, WiFi and Ethernet hardware.

Receiver

Low-Cost Serial Bus Technologies

• RS-422

- Twisted Pair. Longer runs, higher speed to replace RS-232. Better noise immunity. Up to 10Mbits/s. 1500 meters at lower rates.
- Measures voltage difference from line/return lines (pair) vs data/ground in RS-232.

• RS-485

• Industrial control systems. Multi-point systems, long distances, strong in electrically noisy environments.

UP NEXT

Circuitry

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

This Photo by Unknown Author is licensed under <u>CC BY-SA</u> This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Analog vs. Digital Circuits

Analog Circuit

Digital Circuit

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

Analog vs. Digital Circuits

Analog Circuit

- Continuous Wave
- Sine waves
- Recorded as they are
- Noise sensitive/deteriorates
- Not flexible in implementation

Human Voice, Analog Speakers, Record Player

Digital Circuit

- Discrete time Square Wave
- 1's and 0's on different amplitudes
- Can be noise immune
- Can be without deterioration
- Flexible in implementation

CDs, DVD, Computers, Digital Music (MP3)

Pull-Up vs. Pull-Down Resistors

Pull up

Ensures a known STATE for a signal.
Keep a logic gate HIGH when switch is open

> Used for Logic Gates, Wired OR functions (Combination Logic)

Ensures a known STATE for a signal.
Keep a logic gate LOW (GRND) when switch is open

CMOS Logic Gates (Inputs are voltage controlled)

 Pull-up & Pull-Down resistors make sure inputs to digital gates are correctly biased and not floating all over the place when there is no input condition.

Analog to Digital Convertor

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>