How the Internet Works INTRODUCTION TO THE OSI MODEL

Open Systems Interconnection

- Conceptual Model
- Standard for the Internet
- 7 Layers

Outbound

7. Application Layer

6. Presentation Layer

Inbound

5. Session Layer

4. Transport Layer

3. Network Layer

2. Data link Layer

1. Physical Layer

Signals: Digital, Light, Analog

2. Data link Layer

1. Physical Layer

Internet Protocol Addresses build network of all computers.

10.101.200.4

3. Network Layer

2. Data link Layer

1. Physical Layer

33.33.144.9

IP Packets

4 8		8	16 19			31			
Version	IHL	Type of Service	Total Length						
Identification			Flags	Fragment Offset					
Time To Live		Protocol	Header Checksum						
Source IP Address									
Destination IP Address									
Options Padding									
					•	_			

Seven Layers

TCP Packets

- All Packets arrive, or are resent.
- Packets may not take same route
- Packets may not arrive in order
- TCP has overhead latency to manage packages arrival

4. Transport Layer

3. Network Layer

2. Data link Layer

1. Physical Layer

UDP Packets

- Used for live broadcasting.
- Not all packets may arrive
- Faster transit than TCP
- Squares missing on TV are lost UDP packets

0	4	8	16	19	31				
Version	IHL	Type of Service	Total Length						
Identification			Flags	Fragment Offset					
Time To Live		Protocol	Header Checksum		hecksum				
Source IP Address									
Destination IP Address									
	Padding								

TCP 4. Transport Layer

3. Network Layer

IP

TCP/IP is often called "The Language of the Internet"

MANAGED SESSION

5. Session Layer

4. Transport Layer

3. Network Layer

2. Data link Layer

1. Physical Layer

Outbound files are broken down into packets

Inbound files are

7. Application Layer

6. Presentation Layer

5. Session Layer

4. Transport Layer

3. Network Layer

2. Data link Layer

1. Physical Layer

Valedal III Prisijungti

Image Credits (All WikiCommons)

1. This Photo by Unknown Author is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-SA 2. 3. This Photo by Unknown Author is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-SA 5. This Photo by Unknown Author is licensed under CC BY-SA 6. This Photo by Unknown Author is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-NC 8. This Photo by Unknown Author is licensed under CC BY-SA 9. 10. This Photo by Unknown Author is licensed under CC BY-SA 11. This Photo by Unknown Author is licensed under CC BY-SA 12. This Photo by Unknown Author is licensed under CC BY-SA

Essential Question:

"How is information shared across the Internet?"

Applicable Georgia Standards for reference

Introduction to Digital Technology

IT-IDT-4 Identify, describe, select and use appropriate technology IT-IDT-5 Understand, communicate, and adapt to a digital world IT-IDT-6 Explore and explain the basic components of computer networks

Computer Science Principles

T-CSP-7 Gain insight into the operation of the Internet, study characteristics of the Internet and systems built upon it, and analyze important concerns, such as cybersecurity.

AP Computer Science Principles

EU 6.1 LO 6.1.1 Explain the abstractions in the Internet and how the Internet functions. EU 6.2 LO 6.2.1 Explain the characteristics of the Internet and the systems built on it.

Pedagogy Ideas

• Timing

- This lesson can be given in a single period for advanced classes or if a significant base of knowledge of networks is already established
- This lesson can also be spread over several days to allow activities or deeper research into each layer if desired

• Activity Ideas

- Find images applicable to each layer and build an OSI "model."
- Explain the OSI layers to each other in small groups
- Write/Create presentations that dive deeper into each layer