2023-2024 All CS Classes

JCHS CSRL CROSSCUT STANDARDIZATION

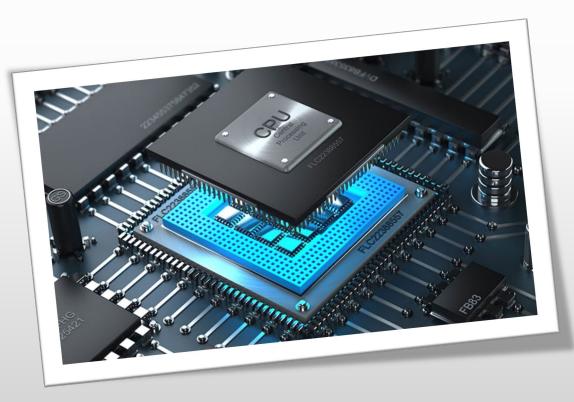
HARDWARE

• It is critical for programmers to understand the hardware on which their programs will run. Failure to do so can lead to significant errors and even security vulnerabilities.

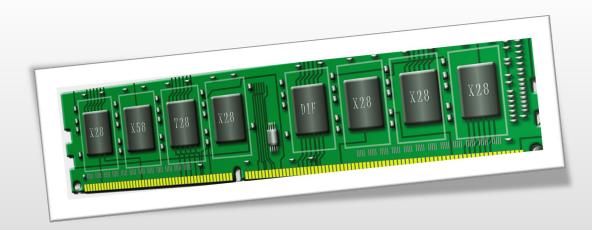
COMPUTER

• A general-purpose electronic device that can perform various tasks by executing programs and processing data.

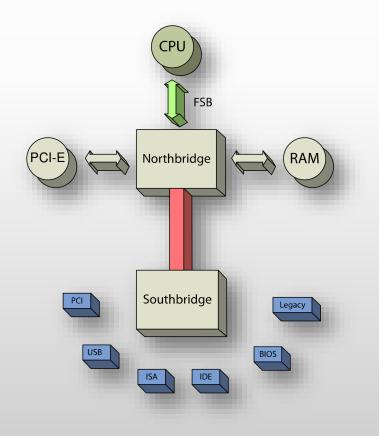
MOTHERBOARD


• The main circuit board of a computer that contains the central processing unit (CPU), memory, and connectors for other hardware components.

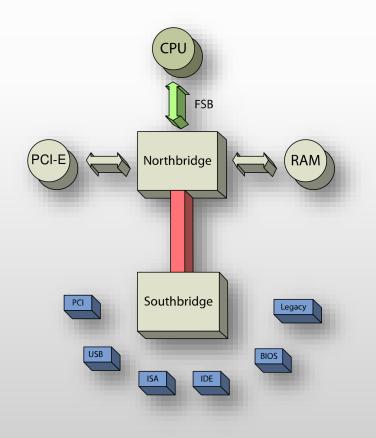
CPU

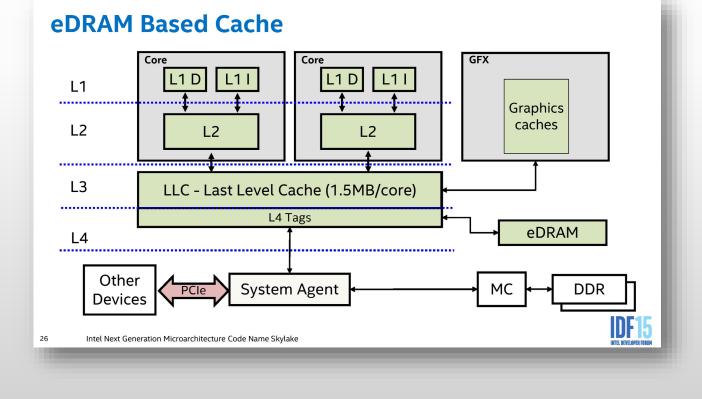

• Central Processing Unit: The primary component of a computer that executes instructions from programs, performing arithmetic, logical, control, and input/output operations.

RAM


• Random Access Memory: A volatile memory used by a computer's operating system and applications to temporarily store data that can be quickly accessed and modified.

NORTHBRIDGE


• Northbridge: A chipset component that connects the CPU to high-speed communication channels like RAM and the graphics card.


SOUTHBRIDGE

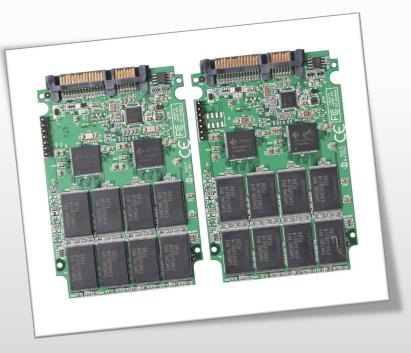
• Southbridge: Manages lower-speed communication channels such as USB, SATA, and PCI on a computer's motherboard.

CACHE

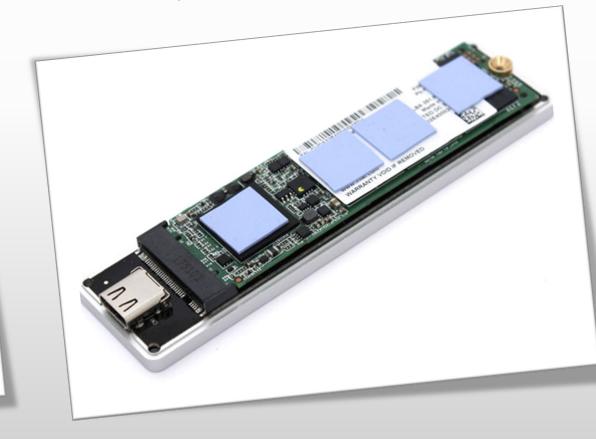
• Cache: Small, high-speed volatile memory that stores frequently used instructions and data to reduce the time needed to access them from slower main memory.

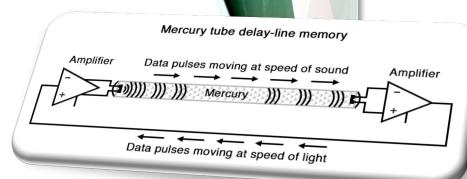
HDD

• Hard Disk Drive: A data storage device that uses spinning disks to store data magnetically on a platter, offering larger storage capacities but slower access times compared to SSDs.



SSD


 Solid State Drive: A data storage device that uses NAND-based flash memory to store data electronically, providing faster access times and improved durability compared to HDDs.


M.2

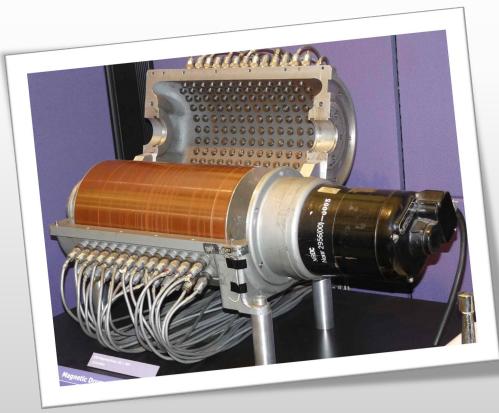
• M.2 SSD: A small form factor for SSDs and other expansion cards that uses a faster and more efficient interface compared to traditional SATA connections.

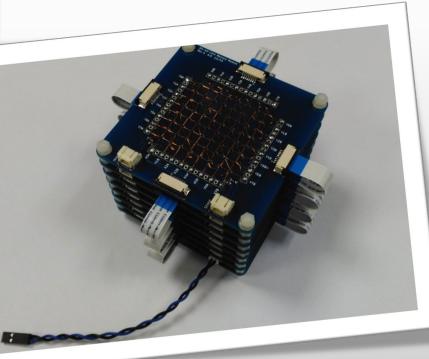
A HISTORICAL LOOK AT HOW COMPUTERS RETAIN DATA

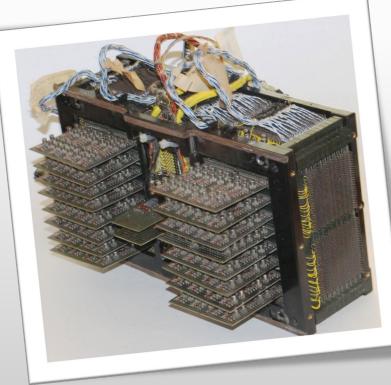
2023-2024 All CS Classes

VACUUM TUBES AND DELAY LINE MEMORY (1940s – 1950s)

- Early Machines like ENIAC and UNIVAC systems
- Used vacuum tubes to perform calculations and store small amounts of data temporarily
- Delay Line memory used sound waves in mercury-filled tubes to store data for short periods

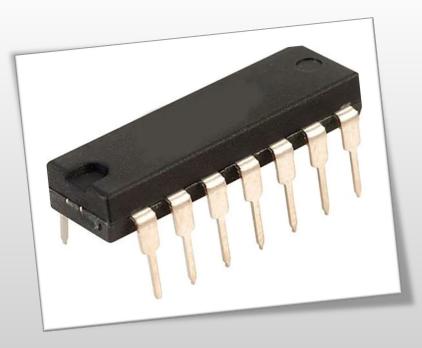


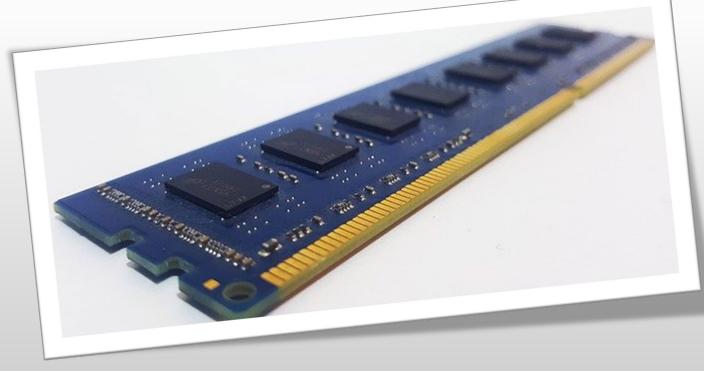

MAGNETIC DRUM MEMORY (1950s – 1960s)


• Rotating cylinder coated with magnetic material. Data stored in the form of magnetized spot on the drum's surface.

CORE MEMORY (1950s – 1970s)

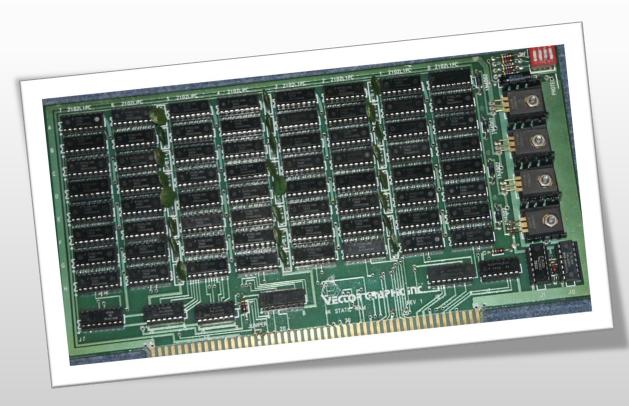
- Tiny magnetic rings, or cores, to store bits of data. When a current flowed through a core, it could be magnetized in one of two directions to represent 0 or 1.
- Core memory was reliable and widely used in early computers, including minicomputers and mainframes.

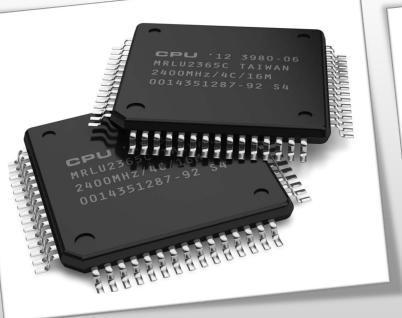



IC MEMORY (1960s - NOW)

- The invention of integrated circuits (ICs) marked a significant advancement. ICs allowed multiple transistors, capacitors, and resistors to be integrated onto a single chip of semiconductor material.
- Early memory ICs were used in computers and other devices, leading to smaller, more efficient memory solutions.

DYNAMIC RAM (DRAM) MEMORY (1970s – NOW)


 DRAM uses capacitors to store data, which must be refreshed regularly to prevent data loss. It offers higher density but slower access times.


STATIC RAM (SRAM) MEMORY (1970s – NOW)

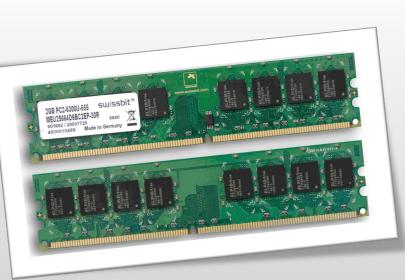
• SRAM uses flip-flops to store data and doesn't require constant refreshing. It's faster but less dense compared to DRAM.

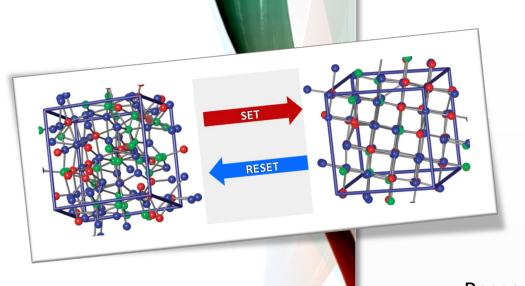
FLASH MEMORY (1970s – NOW)

- Flash memory is non-volatile and can retain data even when power is turned off. It's used in devices like USB drives, memory cards, and SSDs.
- NAND and NOR flash are two common types, with NAND being more prevalent in mass storage devices.

	Read Only Memory	Definition	Notes	
	ROM	Read Only Memory	Permanent at Point of Manufacture	
	PROM	Programmable Read Only Memory	Post Manufacture Burn thence Permanent	
	EPROM	Erasable Programmable Read Only Memory	UV Erasable to Re-Program	
	EEPROM	Electrically Erasable Programmable Read Only Memory	Electrically Reprogramma ble, User Friendly	

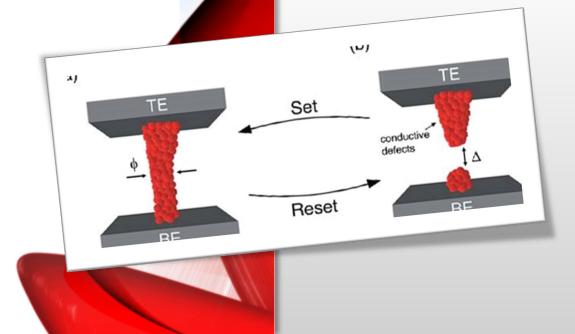
ROM-TYPE MEMORY (1970s – NOW)

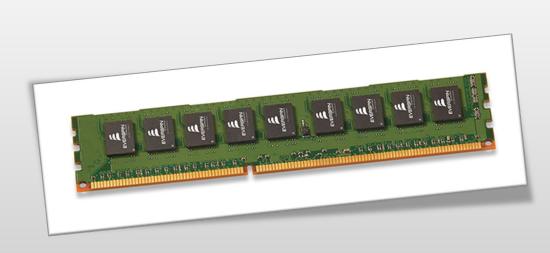




DOUBLE DATA RATE SYNCHRONOUS DYNAMIC RAM (DDR SDRAM) MEMORY (1970s – NOW)

- Common RAM used in computers today. It offers higher speeds and efficiency compared to earlier forms of RAM.
- Solid-state drives (SSDs) have gained popularity as a replacement for traditional hard disk drives (HDDs), providing faster access times and improved durability.





EMERGING MEMORY TECH (FUTURE)

 Researchers are exploring new memory technologies like phase-change memory (PCM), resistive RAM (ReRAM), and magnetic RAM (MRAM) for faster, more energy-efficient storage.

CMOS RAM

- Complementary Metal Oxide Semiconductor RAM (chip) on motherboard.
- Holds Basic Input Output System (BIOS) Settings
- ROM or Flash

CMOS RAM (RTC/NVRAM)
CMOS RAIVI (ITC) and at least 64
A special chip combining a Real-Time Clock (KTO) bytes of Non-Volatile RAM (NVRAM) In Pentium class computers, it
Stores configuration Settings
•Referred to as CMOS because it is on a Complementary Metal Oxide Semiconductor
Eliminates the need for jumpers and switches used for the configuration

CMOS BATTERY

- Powers Real-Time Clock (RTC)
- Maintains Basic Input Output System (BIOS) Settings
- Stores System Config
- Checksums of BIOS settings and Security
- BIOS Updating and Booting

2023-2024 All CS Classes

"ON" POWERING UP

Firmware	Description			
BIOS	Basic Input Output System			
	Provides fundamental instructions and settings required for the computer's hardware to initialize and communicate with the operating system and other software. It plays a crucial role during the boot process and ensures that the hardware components are properly configured and functioning before the operating system starts.			
UEFI	Unified Extensible Firmware Interface			
	Modern replacement for the traditional BIOS firmware. UEFI offers a more advanced and flexible interface between the computer's firmware and the operating system. It supports a graphical user interface (GUI), allowing users to interact with firmware settings using a mouse and keyboard. UEFI also provides improved security features, faster boot times, support for larger storage devices, and better compatibility with modern hardware.			
	BIOS, as a term, can refer to <u>both</u> BIOS and UEFI			

BIOS/UEFI

STARTUP SEQUENCE

itep	Description
	Power-On Self-Test (POST) starts.
2	BIOS (or UEFI) initialization and hardware check.
3	Boot device selection based on BIOS settings.
1	Boot loader execution to load operating system.
5	Operating system kernel loading into memory.
,)	Device initialization, including drivers and controllers.
7	System initialization of services and background processes.
3	User login screen (if required).
)	User desktop environment loading.
0	User interaction and application usage.